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Controllable two-dimensional motions of a two-link mechanism along a horizontal plane are considered. Forces of dry friction 
act between the mechanism and the plane. The control is accomplished through a controlling torque, developed by a motor whose 
axis coincides with the axis of the hinge in the mechanism. Periodic control laws are constructed which guarantee longitudinal 
displacement of the two-link mechanism as a whole. The velocity of these motions is estimated. It is shown that any prescribed 
displacement of the mechanism in the plane may be achieved, and the corresponding motion is demonstrated. The motions 
constructed may serve as a simplified model for the motion of snakes and other animals with no extremities. The proposed mode 
of displacement may be used in the design of mobile robots, in particular, for robots of small dimensions. © 2001 Elsevier Science 
Ltd. All rights reserved. 

Various aspects of the mechanics of snakes have been discussed (see, e.g. [1-4]), as have questions of 
the mechanics of robots employing the principles of snake locomotion; it is generally assumed that a 
snake is capable of utilizing surface irregularities, vertical walls, stones, grass, etc., by pushing against 
which it produces a horizontal component  of the normal reaction. This makes it possible to obtain a 
component of the force of friction directed forward along the snake's path. An analogous result is 
obtained in robot-engineering systems built of separate links equipped with wheels [4]. For these non- 
holonomic mechanical systems, support at side walls is replaced by a reaction normal to the plane of 
the wheels. However, it remained unclear how a wheel-less multi-link mechanism could move along a 
horizontal plane. 

With reference to the example of a three-link mechanism, it has been shown [5, 6] that, by controlling 
the two inner torques applied at the hinges, one can make the mechanism move along a rough horizontal 
surface in any given direction. In the process, slow and fast phases of motion alternate. It has been 
shown [7] that a multi-link mechanism can be made to move using only slow (quasi-static) motions. 

In this paper we investigate the motion of the simplest kind of multi-link mechanism - a two-link 
one consisting of two rigid bodies, equipped with a motor mounted in the hinge - along a rough 
horizontal surface. It will be shown that, through control by a single motor, the mechanism can be made 
to move forward and also be displaced arbitrarily in the horizontal plane. The displacements and 
velocities of motion will be estimated for different mechanical models of a tow-link mechanism. 

1. M E C H A N I C A L  M O D E L  

A two-link mechanism consists of two absolutely rigid bodies connected by a cylindrical hinge (Fig. 1). 
Both bodies perform plane motion in a fixed horizontal plane, in such a way that the axis of the hinge 
is vertical. We introduce a fixed Cartesian system of coordinates Oxyz with the Oz axis pointing vertically 
upward and the Oxy plane coinciding with the plane over which the mechanism is moving; O* is the 
point at which the hinge axis intersects the Oxy plane. 

We will use the following notation: m i masses of the rigid bodies, Ji are their moments of inertia about 
the hinge axis, Ci are the projections of their mass centres on the Oxy plane and ai = O*Ci are the 
distances from the hinge axis O* to the points Ci. The values of the subscript i = 1, 2 correspond to the 
two rigid bodies, which we shall call the body (i = 1) and the tail (i = 2), respectively. We shall assume 
that the hinge is a point mass m0, which is not part of either of the two rigid bodies. This assumption 
reflects the real situation in which an electrical motor producing a controlling torque and possessing a 
considerable mass is mounted on the hinge axis. Thus, the total mass of the two-link mechanism is 

m = m 0 + m I + m 2 (1.1) 
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Fig. 1 

The controlling torque produced by the motor about the hinge axis and applied to the tail will be 
denoted by M. A torque -M then acts on the body. 

Forces of dry friction obeying Coulomb's law act at the point where the mechanism is in contact with 
the plane. At moving points of contact, the frictional force is directed against the velocity of the point 
and has a magnitude P k ,  where P is the normal reaction at the point and k is the constant coefficient 
of friction. For fixed points of contact, the friction force has a value not exceeding P k  and may have 
any direction. The coefficients of friction for points of the body, tail and point mass m 0 are denoted by 
kl, k2 and k 0, respectively. The difficulty is that, when there are more than three points of contact, the 
normal reactions are not uniquely defined, because of static indeterminacy. Hence the friction forces, 
even at moving points, are also not uniquely defined. We will have to deal with this difficulty later. 

Suppose x0, Y0 are the Cartesian coordinates of the point O*, 0 is the angle at which the axis of the 
body 0~C1 is inclined to the Ox axis, and c~ the angle between the axis of the tail C20" and that of the 
body 0"C1 (see Fig. 1). Then the coordinates of the points C1 and C2 may be written as 

x ) = x o + a l c o s 0 ,  Y i = y o + a l  sin0 

x2 = Xo - a2cos(0 + 00, YE = Yo - aEsin(0 + ~) 

(1.2) 

We now write down the coordinates xc, yc of the mass centre C, which will be needed below 

mXc = mlx i  + m2x 2 + moxo =mx 0 + mlalcos0 - m2a2cos(0 + Or) 

my c = m l y  1 + m2Y2 + moYo = my 0 + mlalsin0 - m2a2sin(0 + R) 

(1.3) 

where we have used formulae (1.1) and (1.2). 
Letting v0 denote the velocity vector of the point O*, and o~1 and o~ 2 the angular velocity vectors of 

the body and tail, respectively, we can write the following expression for the angular momentum of the 
two-link mechanism about the point O 

K = m  o O O * x v  o + m j [ O C  I x v  0 + O O * x ( ~ l x O * C  1)1+ 

+ m 2 [ O C  2 x v  0 + 0 0 "  ×(oJ 2 x O * C 2 ) l + J l ~  j +J20) 2 = 

= mOO* x v 0 + (m 10*C 1 + m 20"C 2 ) X ¥0 + [ml (OO* • O ' C  1 ) + J1 ]~1 + 

+ [ m 2 ( O 0 * .  O*C2) + J2 ]0,)2 (1.4) 

The vectors in (1.4) have the following components (see Fig. 1) 

OO* = (xo,Yo,0), O*C l = (aj cos0,aj sin 0,0) (1.5) 

O*C 2 = ( -a  2 cos(0 + 00, - a  2 sin(0 + c0, 0) 

vo = (Xo, Yo, 0), to~ = (0, 0, 0), oJ 2 = (0, 0, 0 + &) 

Substituting formulae (1.5) into Eq. (1.4), we determine the magnitude of the angular momentum 
of the two-link mechanism in the form (the vector K is directed along the Oz  axis) 
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K = m(xo~' 0 - yoJCo) + mla 1 (Xo0COS0 + Yo0sin 0) - 

-m  2a 2 [x 0 (0 + 6c) cos(0 + ~) + Yo (0 + 60 sin(0 + oc)] + m la I (Yo cos 0 - k 0 sin 0) - 

-m2a2[yo cos(0 + (x) - k 0 sin(0 + oQ] + Ji0 + J2(~) + ~) 
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(1.6) 

2. E L E M E N T A R Y  M O T I O N S  

The motions of the two-link mechanism will be constructed as a sequence of simple motions which we 
shall call "elementary motions" (EMs). All EMs begin from the mechanism's state of rest and end in 
a state of rest. The angle cc between the body and the tail in each EM varies monotonically in the range 
(-~, n) according to an arbitrary law co(t), which includes phases of acceleration and deceleration. We 
will denote the initial and final values of this angle in an EM by cc ° and cd, respectively. 

EMs subdivide into slow and fast motions. The duration of a slow motion will be denoted by T and 
that of a fast one by ~. 

Slow motions are motions in which the body remains motionless while the tail turns through a certain 
angle. Below we will derive sufficient conditions under which slow motions may take place. 

Fast motions are motions in which the magnitude M of the controlling torque is much larger than 
the torques produced by the friction forces, while the duration "~ of the motion is small. For fast motions 
we have 

I Ml>>m'gka' ,  m ' = m a x ( m l , m 2 ) ,  a '=max(a~,a2) ,  x . ~ T  (2.1) 

By virtue of conditions (2.1), friction forces can be neglected in the treatment of fast motions. 
Consequently, the laws of conservation of momentum and of angular momentum hold in such motions. 
At the beginning of the motion, however, the mechanism is in a state of rest; hence, for a fast 
motion 

xc = const, Yc = const, K -  0 (2.2) 

Expressions for x C, Yc and K are given by formulae (1.3) and (1.6). 

3. ANALYS IS  OF SLOW M O T I O N S  

To derive the conditions for the body to remain motionless in slow motions, the following scheme of 
reasoning will be used. First, assuming that the body is motionless, we will determine the forces with 
which the body and the tail interact, on the assumption that the tail is resting on the horizontal plane 
at points on the straight line 0"C2. We will then consider the balance of forces and torques acting on 
the body and find the sufficient conditions under which the friction forces (in conditions of static 
indeterminacy) can balance out the other forces acting on the body (forces of interaction with the tail 
and controlling torque). 

Let N and R denote the projections of the force, which the body applies to the tail, on to the direction 
of the segment C20" and on to the perpendicular direction (Fig. 1), respectively. We set up the equations 
of motion of the mass centre of the tail, projected on to these directions, on the assumption that the 
body is motionless: 

m2a26c 2 = N, m2a 2& = R - k  2 signdcEGi (3.1) 

The last term is the sum of the friction forces acting on the tail and G i are the reactions normal to the 
Oxy plane at the points of contact of the tail and the plane. The summation in (3.1) and in subsequent 
equations ranges over all points of contact. In the case of contact along an entire segment, the summation 
must be replaced by integration, but all other results remain unchanged. 

The equation of the torques for the rotation of the tail about the point O* is 

J26c = M - k 2 sign & ~-.Gis i (3.2) 

where si is the distance from O* to the i-th point of contact, taken with a plus sign if the point is on the 
same side of O* as the point C2, and a minus sign otherwise. 
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The normal reactions satisfy the following equations 

ZG i = m2g, Y~Gis  i = m2ga 2 

Substituting these into Eqs (3.1) and (3.2), we obtain 

N = m2a26~ 2, R = m2(a2~+gk  2 sign&) 

M = J2& + m2gk2a 2 sign 6c (3.3) 

We now introduce notation for the maximum values of the angular velocity and angular acceleration 
in slow motions 

co 0 = max l de 1, e0 = max I & I (3.4) 

The maximum is taken over the entire slow motion. 
Formulae (3.3) and (3.4) imply the following estimates 

INl<~m2a20~,  IRl<~mza2(e o+gk2a] j), I M I ~  <J2Eo+m2gk2a 2 (3.5) 

Let us consider equilibrium of the system consisting of the body and the mass m 0 at the point O*. In 
the Oxy plane this system is acted upon by forces (-N) and (-R) applied at the point 0% a torque (-M) 
and friction forces. The system will be in equilibrium if, at any point Q in the Oxy plane, the magnitude 
of the torque M1 about that point of all forces except the friction forces acting on the system does not 
exceed the maximum possible magnitude Mf of frictional forces (according to Coulomb's law) relative 
to that point. This condition means that, if Q is considered as the instantaneous centre of velocities for 
the system, then the applied forces will not produce rotation of the system about that point, since the 
torque of the friction forces can counteract the applied torques. Note that, according to this formulation 
of the equilibrium conditions, not only rotational but also linear motions are impossible; in the latter 
case the point Q must tend to infinity. 

We introduce a Cartesian system of coordinates O*~rl whose axis O'~ is directed along the segment 
0"C1 and its axis O*rl is perpendicular to the latter. The coordinates of the point Q in the system O*~r 1 
will be denoted by ~, rl. 

A necessary and sufficient condition for the body to be stationary is the following inequality. 

I Mj I ~< My, V~,rl (3.6) 

which holds for all ~, rl, including their infinite values. 
The torque M1 is 

M l = -M + ~(N sin o~ - Rcos ~) - lq(N cos c~ + Rsin o0 (3.7) 

Using the Cauchy inequality and estimates (3.5), we deduce from (3.7) 

I MI I ~< I M I +(N 2 + R2)~(~ 2 + 112) ~ ~< J2eo + m2gk2a 2 + 

+m2a2[o) ~ + (1~0 + gk2a~l )2 ]~ r (3.8) 

where we have introduced the notation 

r = (~2 + r12)~ = O'Q (3.9) 

Let us evaluate the magnitude Mf of the maximum possible torque about Q of the friction forces 
acting on the body and the mass m0. This value Mf will be obtained if the friction force at each point 
of contact is of maximum magnitude and directed perpendicular to the segment connecting Q to that 
point. We obtain 

My = klY~Pir i + komogr, r/= [(~ - ~i) 2 + (rl - I]i)2] ½ (3.10) 
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where Pi is the normal reaction at a certain point of contact of the body with the Oxy plane, (4 ,  'qi) a r e  
the coordinates of that point of contact in the system O*{rl, ri is the distance from that point to Q, and 
r is defined by (3.9). Summation over i in (3.10) and subsequent formulae ranges over all points of contact 
of  the body with the Oxy plane, summation being replaced by integration if contact occurs over entire 
regions. 

The normal reactions Pi satisfy the following equations and inequalities 

~'Pi = mlg, ZPi~i = mlgat, ~P/rli = 0, P/> 0 (3.11) 

Equations (3.11) reflect the fact that the mass of the body is ml and its mass centre has coordinates 
(a 1, 0) in the O*~rl system. If the body is in contact with the plane at more than three points, Eqs (3.11) 
do not uniquely determine the normal reactions Pi (static indeterminacy). 

In order to derive the sufficient conditions for the body to be motionless, we will determine a lower 
bound for Mfwhich holds for any ~, q and any distribution of the normal reactions satisfying Eqs (3.11), 
and then require this bound to be at least equal to the upper bound (3.8) for IM1 I. The relations (3.10) 
and (3.11) imply the following estimates 

M / >~ kl~,P i I ~ - ~i I +komogr >~ kl I~ -~  - EP/~i ] + 

+ komogr = klmlg I ~ - al] +komogr (3.12) 

Using estimates (3.8) and (3.12), we obtain the sufficient condition for the body to remain motionless, 
as an inequality 

b 0 ~< b I I ~ - a l  I+b2r (3.13) 

where we have introduced the notation 

b 0 = J2E0 + m2gk2a 2, bl = mlgkl, 

b 2 = mogk 0 - m2a2[Oo 4 + (E + gk2a21 )2]~2 (3.14) 

Inequality (3.13) must hold for all {, rl. We first put ~ = rl = 0 in (3.13), and then ~ = al, ~q = 0. 
Using equality (3.9), we obtain 

bo <~ blal, bo <- b2al (3.15) 

Suppose both inequalities (3.15) hold. Then b2 > 0 and we have the bound 

bl I ~ - a l  I+b2r ~ bl I ~ - a l  I+b2 I~1 

The right-hand side of the last inequality is a piecewise-linear function of ~, which has a maximum at 
either ~ = al or q = 0. Consequently, by (3.15), we have 

bl ] ~ - a l  I+b2r>~ min(blal,b2al)>~ bo 

Thus, if both inequalities (3.15) hold, inequalities (3.13) hold for all ~, r I. Consequently, the joint validity 
of inequalities (3.15) is the sufficient condition for the body to be motionless. 

In developed form, taking notation (3.14) into account, the sufficient conditions for the body to be 
motionless are 

J2E0 + m2gk2a 2 <~ mlgkla I 

J2eo + m2gk2a 2 + m2ala2[to 4 + (e + gk2a21 )2]~ ~< mogkoal 

(3.16) 

Suppose the slow motions occur at fairly low angular velocities and accelerations, so that o)0 and e0 
are very small. Then conditions (3.16) become 

m2k2a2 < mlklal, m2k2(al +a2) < mokoal (3.17) 
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If inequalities (3.17) are satisfied, one can always ensure that the body will be motionless by sufficiently 
slow rotation of the tail (with small ~o 0 and %). 

4. ANALYSIS OF FAST M O T I O N S  

We will use the conservation laws (2.2). To do this, we first differentiate relations (1.2) with respect 
to t: 

xl -- 2~o -Oal  sinO, Pl = Yo +Oal cosO (4.1) 

-t2 = Xo + (0 + &)a 2 sin(O + ot), 5'2 = Y0 - (0 + &)a 2 cos(O + ot) 

We then differentiate relations (1.3), after first substituting (4.1) into them and using the fact that, by 
(2.2), .tc = Y¢ = O. We obtain two relations, from which we obtain the derivatives 

Xo = m-I [m~atO sin 0 - m2a 2 (0 + ~)sin(O + ot)] 

Y0 = rn-I [-rn|al0 cos 0 + m2a 2 (0 + 6 0 cos(0 + ot)] 

Now, substituting these derivatives into formula (1.6) for K and bearing in mind that, by (2.2), K = 0, 
we obtain a linear homogeneous relation for the derivatives 0 and a,  which, after some algebra, reduces 
to the following from: 

dO~dot = --<,0(ot) (4.2) 
2 2 

m J  2 - m2a  2 + mlrn2a|a 2 cosot 
~P(ot)= rn(Jl + J2)-m~a21 2 2 - m2a 2 + 2mlm2ala  2 coso~ 

It follows from (4.2) that the variation A0 of the angle 0 during the fast motion depends only on the 
0 1 initial and final values c~ and c~ of the angle c~ in that motion, but not on the law governing the variation 

of the angle c~. We have 

t0 13 
z~0 = - S ~(ot)dot = "Y(oto)- ~'(ot|), Y([~) = S ~,0(ot)dot (4.3) 

6 o 0 

Evaluating the integral y(13) we obtain [8] 

T(13)=13+2 A+A_ A° arctg(AA~_+tg~- / (4.4) 

Ao m ( J 2 -  J1) +m~a21 2 2 = - m 2 a 2 , 

A+ = [m(J| + J2 ) - (m|a| + m2a 2 )2 ]½ 

As 13 varies from 0 to 7t, the function 7(13) increases monotonically from 0 to 

7(~) = (r~ / 2)(A 0 + A + A ) ( A + A _ )  -| 

Now, integrating relations (4.2), we can calculate the increments of the coordinates of the hinge O* 
during the fast motion 

Ax o = rn -I [ - m | a | A  cos 0 + m2a2A cos(0 + ot)] (4.5) 

Ay 0 = m -j [-m t a I A sin 0 + m2a2 A sin(0 + ot)] 
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5, L O N G I T U D I N A L  D I S P L A C E M E N T  OF T H E  T W O - L I N K  M E C H A N I S M  

We will now describe a sequence of elementary motions which leads to longitudinal displacement of 
the two-link mechanism. Suppose that at the starting time the mechanism is at rest, constituting a segment 
parallel to thex  axis (state 0 in Fig. 2). We have 0 = a = 0 in state 0. In addition, we will assume, without 
loss of generality, that x0 = Y0 = 0 in that state. 

1. Perform a slow motion in which the tail turns through an angle [3 and the body remains motionless. 
The mechanism will reach state 1 in Fig. 2, in which 

0 = 0 ,  c t=~ ,  x o = Y o = O  

2. Perform a fast motion in which the angle c~ varies from [3 to 0. The mechanism reaches state 2 in 
Fig. 2. In this state, by formulae (4.3) and (4.5), we have 

0 = )'([3), x 0 = m - I [ m l a l ( !  - c o s ) ' ) +  m2a2(cosy-  cos[~)] (5.1) 

YO = r n - I [ - m l a l  sin Y + m2a2(sin) '-  sin ~)] 

Figure 2 illustrates only the variations of the angle c~, but those of the angle 0 and the coordinates 
Xo, Y0 are not shown. 

3. By means of a slow motion, change the angle c~ from 0 to -[[3. The mechanism reaches state 3 in 
Fig. 2. The angle 0 and the coordinates x0, Y0 remain as before and are given by formulae (5.1). 

4. By means of a fast motion, change the angle ct from -[3 to 0. The mechanism reaches state 4 in 
Fig. 2. In that state, by formulae (4.3) and (4.5), we have 

e = o, x 0 = m -I rn2a 2 [cos )' - cos [3 + 1 - cos()' - 9)] (5.2) 

yo = m - l m 2 a 2  [ s in  )' - sin [3 - sin()' - [3)] 

O 0 

y O 1 

o 2 

~ '  O 4 

o 6  

(2" 4;3 O 

Fig. 2 

8 (0) 
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As a result of these motions the two-link mechanism has again become a segment parallel to the x 
axis, but it has been displaced laterally (Y0 ;~ 0). To cancel out this displacement, repeat the above motions 
in a different order, namely, perform motions 3, 4, 1, 2. 

5. Using a slow motion, change the angle e¢ from 0 to -13. The mechanism reaches state 5 in Fig. 2, 
in which the variables 0, x0, Y0 are given by formulae (5.2). 

6. Using a fast motion, change the angle e¢ from -13 to 0. The mechanism reaches state 6 in Fig. 2, in 
which, according to formulae (4.3), (4.5) and (5.2), we obtain 

x o = m -1 { m l a  1 (I - cos ]¢) + m2a  z [2 cos 7 - 2 cos 13 + 

+ i - c o s ( ~ , -  13)]1 (5 .3 )  

0 = -y / ,  Yo = m - I [ - m l a l  sin ~' + m2a  2 Sin(y - 13)] 

7. Using a slow motion, change the angle e¢ from 0 to 13. The mechanism reaches state 7 in Fig. 2, in 
which the variable 0, x0, Y0 are given by formulae (5.3). 

8. Using a fast motion, change the angle cz from 13 to 0. The mechanism will reach state 8 in Fig. 2. 
By formulae (4.3), (4.5) and (5.3), we obtain in that state 

0 = O, x o = 2 m - l m 2 a 2 [ c o s y - c o s 1 3 +  

+ 1 - cos(]' - 13)], Y0 = 0 (5.4) 

State 8 differs from state 0 in Fig. 2 only in that the mechanism has moved along thex axis by a distance 
given by formulae (5.4). This displacement may be represented in the form 

l = 8 m - l m 2 a 2  sin(13/2) x 

x cos(y / 2) sin[(13 - y/) / 2] (5.5) 

where the function y(13) is defined by formula (4.4). 
The cycle of four slow and four fast motions that takes the two-link mechanism from state 1 to state 

8 in Fig. 2 may be repeated any number of times n. By a suitable choice of the number n and of the 
angle 13 through which the tail turns, one can achieve any longitudinal displacement of the mechanism. 

The average velocity of the longitudinal motions is 

v = l [ 4 ( T + x ) ]  -1 ( T > > z )  (5.6) 

where T and x are the durations of the slow and fast motions, respectively. 

6. A R B I T R A R Y  D I S P L A C E M E N T  OF T H E  T W O - L I N K  M E C H A N I S M  

We will now show ~how elementary motions may be used to achieve any desired displacement of the 
mechanism in the Oxy plane. Suppose that in the initial and final states the mechanism is aligned along 
a straight line and at rest. Without loss of generality, we shall assume that in the initial state 

x0 = y0= 0, 0 = e t = 0  

The final state will be written in the form 

x0=x*, y0=y  *, 0=0" ,  i t = 0  (6.1) 

The desired displacement will be constructed from the following steps. 
1. By means of a slow motion, change the angle cz from 0 to 131. 
2. By means of a fast motion, change the angle ct from 131 to -131- As a result, according to formulae 

(4.3), (4.5), the angle 0 and the coordinates x0, Y0 take the following values 

0 = 01 = 2~131)  

x o = m - I  {mla  t (1 - cos 01 ) + m2a  2 [cos(01 - 131 ) - cos 13t ] } 

Yo = m - t  { - m l a l  sin 01 + m2a2[sin(01 - 131 ) - sin 131] } 

(6.2) 
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3. By means of a slow motion, change the angle ~ from -[31 to [31. 
4. Perform the sequence of motions 2 and 3 n 1 times and then, by a slow motion, change the angle 

ot from [31 to 0. The two-link mechanism will again assume a linear shape, and by (6.2) its position and 
orientation will be defined by the formulae 

x 0 = x" = Z~l, Yo = Y" = Zyl' 0 = 0 ' =  nl01, 01 = 2y([31) (6.3) 

where 

ni 
Zxi = m -I {mla ! 11 - cos(niO i )] + m2a 2 ~, [cos(j0i - [3i) - cos(j0i - 0 i + ~i )] } 

j=l 

ni 
Y'yi = m-I {-mlal sin(niOi) + m2a2 ~ [sin(j0i - [3i) - sin(j0i - 0 i + [3i )] } 

j=l  

5. Perform the linear displacement of the mechanism described in Section 5 with some parameter  
[3. After n cycles of this displacement, the coordinates of the hinge O* will be 

x o = x ' = x ' + n l c o s O ' ,  Y o = Y " = Y ' + n l s i n O "  (6.4) 

while the angle 0 will remain equal to 0'. The displacement l is defined by (5.5), and x', y', 0" by 
Eqs (6.3). The two-link mechanism is still straight. 

6. Perform the sequence of motions 1-4 with the angle [31 replaced by [32 and the number n 1 by n2. 
As a result, the mechanism will again be straight in form. Its new position and orientation will be defined 
by formulae analogous to (6.3): 

Xo=X"+~x2,  Yo=Y'+Y'y2,  0 = 0 ' + n 2 0 2 ,  0 2 = 2 ] ' ( [ 3 2 )  (6.5) 

The variables x0, Y0 and 0 at the end of the motion, as defined by (6.5), must equal the given values 
(6.1). Substituting expressions (6.5) into formulae (6.1), as well as (6.3) and (6.4), we calculate the 
trigonometric sums in (6.3) and (6.5) [8]. 
After some reduction we obtain the equations 

0 '+  0"=  0* (6.6) 

B I (I - cos0') + B2(I - cos 0") + n/cos0 '  = x* 

- B  I s i n 0 ' -  B 2 s in0"+n/s in0"  = y* 

where we have put 

O ' = n l O  l, O " = n 2 0 2 ,  0 i = 2 ] ' ( [ 3 i ) ,  i = 1 , 2  (6.7) 

B i = m -I {mla I + m2a 2 sin([3i - 0 i / 2)[sin(0i / 2)] -1} 

If we substitute expressions (6.7) into formulae (6.6), we obtain three transcendental equations for 
the three unknown integers n 1, n2, n and the three angles [31, [32, [3 on which the angles 01, 02 and the 
displacement l, respectively, depend (see (6.7) and (5.5)). 

We will show that these equations are solvable in the important case in which the final point is quite 
far from the initial point, i.e., with the condition 

m a x ( a l , a 2 ) l d  = e "~ 1, d - [ (x*)  2 +(y*)2]~ (6.8) 

Let  us assume that the angles [31, [32 and [3 are so small and the numbers nl, n 2 and n so large that 
0a, 0z and l are also small and the products n101, n202 and nl are finite. It follows from (4.4) that for 
small angles 13 

¥([3) = A[3, A = (I + AoA_-2)/2 < 1 (6.9) 

We then have, by formulae (5.5) and (6.7) 
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l = D[32, D= 2 m - l m 2 a 2 ( I -  A), 0 i=2A[3 i (6.10) 

B i = b = m q [ m l a l + m 2 a 2 ( A  q - l ) ] ,  i=1 ,2  

Substituting expressions (6.10) into (6.6), we obtain 

0 ' + 0 " = 0 " ,  b ( 2 - c o s 0 " - c o s 0 " ) + L c o s 0 ' = x *  (6.11) 

-b(sinO" +sinO")+ Ls inO'= y*, L = n l  

The first equation of (6.11) gives 0" = 0* - 0', and we then eliminate L from the second and third 
equations of (6.11). This gives a transcendental equation for 0': 

tg0'= y* + b[sin 0" + sin(0* - 0")] (6.12) 

x* - b[2 - cos0'  - cos(0* - 0')] 

It follows from (6.10) and (6.8) that 

b -max(a  I, a2) - e d  

Since e ,~ 1, a solution of Eq. (6.12) will be sought in the form 

0 ' =  0~ + 0~, 0~ = arctg(y* /x*) (6.13) 

where 0] is a small quantity of the order of E. Substituting 0' from (6.13) into Eq. (6.12) and simplifying, 
assuming that b - ed, 0] - e, we obtain 

O~ = bd q [2 sin 0~ + sin(0* - 20~)1 (6.14) 

Equations (6.13) and (6.14) determine the solution 0' of Eq. (6.12) with an error of the order of E 2. 
Using formulae (6.11), we obtain, with the same degree of accuracy 

0 " = 0 " - 0 ' ,  L = d + b [ l - 2 c o s 0 ~ + c o s ( 0 " - 2 0 ~ ) ]  (6.15) 

Equations (6.13)-(6.15) determine the required solution 0', 0", L of system (6.11). On the other hand, 
it follows from (6.7), (6.10) and (6.11) that 

O" = 2An1[31, 0" = 2An2132, L = Dn~ 2 (6.16) 

The constants A and D are given by Eqs (6.9) and (6.10). Choosing sufficiently small values of the 
angles [31, [32 and [3 and sufficiently large integers nl, n2 and n, we can a plproximate the solution 0', 
0", and L given by (6.16) to any desired accuracy. It turns out that t7 i N [3 i -  , i = 1, 2 and n - [3 2 (see 
(6.16)). 

We have thus established that, provided condition (6.8) is satisfied, the two-link mechanism can be 
moved from any initial state to any final state (6.1) to any prescribed accuracy. We have demonstrated 
a constructive mode of control which carries out that displacement. Of course, this mode of control is 
far from unique; it was chosen so that the computation could be carried through to completion in explicit 
form. One can indicate modes of displacement requiring less time; their computation requires the 
solution of a system of transcendental equations. 

The motions we have constructed consist of slow and fast motions. For fast motions to be possible, 
conditions (2.1) must hold, while the sufficient conditions for slow motions to be possible are given by 
inequalities (3.16). If the slow motions are sufficiently slow, conditions (3.17) may be applied. 

7. S P E C I A L  CASES 

We shall consider two simple and important special cases of a two-link mechanism. Let the body and 
tail be point masses of mass ml and m2, respectively, attached to a hinge of mass rn 0 by weightless rigid 
rods. In that case, in formulae (4.4) and (3.16) we must put 
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J, = m,a?, J2 =mza~ (7.1) 

The second case is that of a mechanism consisting of two uniform straight rods of identical linear 
density p attached to a hinge of negligible mass. The rods are in contact with the plane along their entire 
length, and each element of either rod is subject to a normal reaction and friction force proportional 
to the length of the element. The coefficient of friction of any element is assumed to be k. This is 
essentially a schematic model of a snake bent at one point. 

Denoting the lengths of the body and tail by ll and l 2, respectively, and using the notation adopted 
above, we obtain 

mi=Pl i ,  a i = l i / 2  , J i = p l 3 / 3 ,  i = ! , 2  (7.2) 

m o = O, m = m I + m 2 

Substituting expressions (7.2) into (4.4), we specify and simplify the formulae for A0 and A± for this 
case 

A o = (l~ - l? )(17 + 12 + 41,12 ) 

A+ =[(lj +/1)4_121~1~]~ A_ =(ll +12) 2 

(7.3) 

All the relations for fast motions remain valid; we need only substitute Eqs (7.2) and (7.3) into them. 
The situation is different with regard to the conditions for slow motions to be feasible; inequalities 

(3.16) and (3.17) do not hold for m0 = 0. To show that slow motions are possible for the model under 
consideration, more detailed estimates are required. 

Taking (7.2) into account, inequality (3.8) becomes 

[ Ml I ~< pl~ {/2~0 / 3 + gk 12 + [o34 + (~-o + 2gk121 )2 ]15 r / 2} (7.4) 

Formula (3.10) for the magnitude of the torque produced by the friction forces in this case takes the 
form 

Ii 
M f  =kpgl ,  I = J [ ( ~ - s )  z +rlZl)~ds (7.5) 

0 

We will estimate the integral I from below in two ways. Using the obvious inequality l a I + I b I ~< 
(2a 2 + 2b2) 1/2, we obtain 

I >~ ( l o+ l r l l l l ) /~ t2  

t, [1~111+17 /2,  ~ < 0  

l o = S  I ~ - s l d s = Q ~ / 2 + ~ ( ~ - l , ) ,  0 < ~ 1 ,  (7.6) 

0 [ t e l  - l? / 2, ~ > I I 

From the obyious inequality 

112 / 2 + ~(~ - / I )  ~> ( t ~  _ l)/i ~ 

we obtain the bound 

/0 t> (~/2 - 1)1~ I/1 (7.7) 

which is easily seen to hold for all three cases of (7.6), i.e. for any ~. From formulae (7.6) and (7.7) we 
obtain the bound 

I > / ( I - 1 / 4 2 ) ( l ~ l + l r l l ) t l  t> (1-1 /~ f2) l l r ,  r = ( ~  2 +n2)  ~ 

On the other hand, by (7.5) and (7.6), we have 

(7.8) 
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1/> 10 > / l ? / 4  (7.9) 

As a result, using formulae (7.5), (7.8) and (7.9), we have the limit bound  

M I >1 (kpgl  I /4 )max( /1  , 2 ( 2 - - ~ ) r )  (7.10) 

Using bounds  (7.4) for IM~I and (7.10) for  Mr, we see that the sufficient condi t ion for  (3.6) to hold 
is that, for  all r >~ 0 

cl + c2r <~ c3max(coll ,  r) (7.11) 

where we have put  

c, = (2/3)Co13 + gkl~, c 2 = [co 4 + (Co + 2gk l f '  )2 ]½ l~ 

c 3 = (2 - -vr2)gklj, c o = (2 + ~/~) / 4 

(7.12) 

The expression on the left-hand side of  inequality (7.11) is an increasing linear function of  r, while 
that on the r ight-hand side is a piecewise-linear convex function of  r with a jump of  derivative at 
r = col v For  inequality (7.11) to hold for all r t> 0, it is necessary and sufficient that  it holds at r 0 = col 1 
and as r ~ ~.  We obtain the condit ions 

Cl +C2Coll <~ C3coll, c2 <~ c3 (7.13) 

It is easy to see that the second condit ion o f  (7.13) follows from the first. Consequent ly ,  the first 
inequality is the sufficient condit ion for a slow mot ion  to be possible in this model.  Writ ten out in full, 
taking the nota t ion (7.12) into account,  this condi t ion takes the form 

(~)Co132 + gkl~ + (2 + ~t2)[o34 + (c o + 2gkl~ j )2 ]~ l,l~ / 4 <~ gkl21 / 2 (7.14) 

At vanishingly small angular velocities and accelerat ions coo and E0, inequality (7.14) becomes  

2~.2 + (2 +-~/2)~.- 1 ~< O, ~ .=12 / t  ' (7.15) 

Since ?~ > O, this inequality will hold if 

~, = l 2 / I l ~< X, o = [(14 + 4-,,/2) ½ - 2 - ~ - ] / 4  = 0.255 (7.16) 

If  condit ion (7.16) is satisfied, the sufficient condi t ion (7.14) for the body to be motionless may always 
be guaranteed  by choosing sufficiently small co o and e0, that  is, provided the rotat ions of  the tail are 
sufficiently slow. 

8. E X A M P L E S  

Let us assume that the slow motions consist of accelerating and decelerating phases with angular velocities of the 
same magnitude t0. Then the magnitude of the angular velocity c0(t) = ]a(t) I varies as 

co(t) = V.ot, t ~ [0, T/2]; t0(t) = %(T-  t), t c IT/2, T] (8.1) 

and the angle 13 through which the tail turns in the slow motions and maximum magnitude of the angular velocity 
t00 are 

= eoT2/4, o~ o = v_oT/2 (8.2) 

Suppose that the prescribed parameters (8.1) and (8.2) of the motion are 

v__. 0 = 4 s -2, T = I s, [3 = 1 rad, COo = 2 s -1 (8.3) 

Consider two versions of a two-link mechanism moving with characteristics (8.1)-(8.3). 
1. The mechanism consists of two point masses and has the following parameters: 
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m0=0.6kg,  m l = 0 . 3 k g ,  m2=0.3kg,  m = l . 2 k g  

a l = l m ,  a2=0 .2m,  k o = k l = k 2 = 0 . 2  

A check of conditions (3.16), taking (7.1) into account, shows that they are satisfied. The longitudinal displacement 
per cycle, evaluated using formulae (5.5) and (4.4), turns out to be l = 0.085 m, and the average velocity of 
longitudinal motion, according to formula (5.6), is t) = 0.021 m s -1. 

2. The mechanism consists of two uniform rods and has the same mass and dimensions as in the first example. 

m l = l  kg, m2=0.2kg,  m = l . 2 k g  

l l = l m ,  /2=0.2m,  p = l  kgm -1, k=0 .2  

A check shows that condition (7.14) for the motions to be possible is satisfied. The longitudinal displacement I is 
evaluated by formula (5.5), taking formulae (4.4), (7.2) and (7.3) into account. We obtain 

l = 0.028 m 

The average velocity of longitudinal motion, according to formula (5.6), is 

o0=0.007 ms -I 

By formulae (2.1), the magnitude of the controlling torque necessary to implement the motions in both examples 
is of the order of 8 N. m. 

9. C O N C L U S I O N  

The  above  invest igat ion shows that  a two-l ink mechan i sm can be moved  over  a rough  hor izonta l  surface. 
T h e  m e c h a n i s m  can  move  a long a s t ra ight  l ine as a whole ,  ro t a t e  and  i m p l e m e n t  any d i sp l acemen t  in 
the  plane.  Sufficient condi t ions  for  this mode  of  mot ion  to be possible have been  established.  The  mot ion  
is con t ro l l ed  by a single m o t o r  m o u n t e d  at the  hinge o f  the  mechan i sm.  The  mos t  na tu ra l  way of  do ing  
this is to use an electr ic  motor .  This mode  of  mot ion  is r emarkab le  for the simplicity of  bo th  the s tructure 
o f  the  device and  the  m o d e  o f  control .  I ts use for  some types of  mobi le  robo t s  seems  promising.  

This  research  was s u p p o r t e d  financially by the Russ ian  F o u n d a t i o n  for  Basic Resea rch  (99-01-00258). 
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